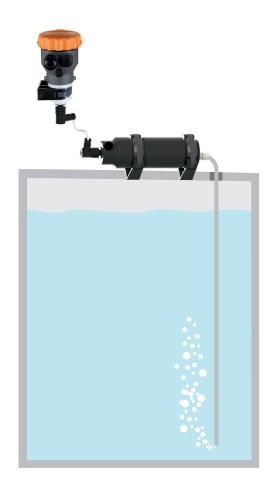


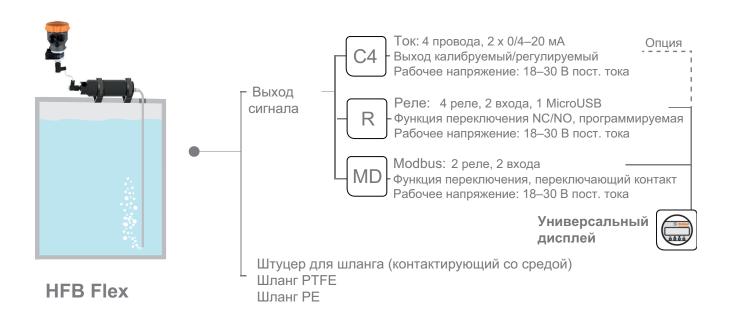
Гидростатический датчик уровня HFB C4 / R / MD

Область измерения давления 0-0,5 бар Питающее напряжение 18-30 В постоянного тока


Характеристики

- Определение уровня заправки выполняется измерением гидростатического давления среды продувкой мерного шланга или трубки (барботажный метод)
- Пригоден для использования с пенистыми средами
- Для определения уровня заправки до 5 м водяного столба в емкостях при атмосферном давлении
- Альтернативные интерфейсы выходных сигналов (токовая петля / pene / Modbus RTU)
- Датчик не контактирует со средой

Указание


Для настройки датчика в релейном и Modbus-моделях необходим пульт управления и индикации (универсальный дисплей).

www.asv-stuebbe.de/produkte/mess-und-regeltechnik

Гидростатический датчик уровня HFB C4 / R / MD

Сенсорный датчик: AL₂O₃ 96% (не контактирующий со средой)

Использование

Датчик уровня (модель HFB) является измерительным преобразователем давления для измерения уровня заправки по барботажному методу. Он измеряет давление воздуха в шланге или трубке, доходящих до дна емкости, которое соответствует гидростатическому давлению на дне емкости. Благодаря установленному, электронно регулируемому воздушному компрессору, это гидростатическое давление удерживается в измерительном шланге или трубке.

Монтаж

- Измерительный преобразователь давления для измерения уровня при монтаже вне среды.
- Предназначен для измерений в колодцах, бассейнах, а также в открытых или закрытых безнапорных емкостях.
- Комплексный набор элементов управления и индикации с реле, выходом сигнала о/4–20 мА или шиной Modbus RTU.

Принцип действия

- Гидростатическое давление или давление процесса при котором продуваемая измерительная трубка измеряется керамическим датчиком давления из ₂O₃.
 Переключение значений происходит в присоединительном корпусе.
- Выходные значения изображаются на универсальном дисплее или снимаются с соответствующих выходов.
- Модели

C4:

Модуль тока передает давление через нормированные сигналы o/4-20 мA.

MD:

Modbus-модуль отвечает за коммуникацию по шине данных. Он содержит два свободно программируемых релейных вывода, которые можно при необходимости использовать непосредственно в технологическом процессе.

R:

Релейный модуль имеет четыре программируемых релейных вывода. Особенно подходит для прямого управления чувствительными узлами установки напр. работа насосов вхолостую.

Исполнение

 HFB Flex состоит из корпуса датчика и отдельного корпуса для подключения, соединенные сенсорным кабелем длиной 5 м и с находящимся в корпусе датчика компрессором.

Места подключений

- Сигнальный вывод для токовой петли (С4): о/4-20 мА
 Вывод калибруется/регулируется
- Сигнальный вывод для Modbus RTU (MD): RS485
 - 2 реле, 1 A/ 30 В пер. ток/пост. ток 2 гальванически разделенные вводы
- Сигнальный вывод для реле (R): 4 реле, 5 A/ 230 В пер. ток Функция переключения NC/NO программируется 2 ввода

Управление

- 4-х проводная модель (С4): с интегрированным потенциометром, или как опция с пультом индикации и управления (универсальный дисплей)
- Релейная модель (R):
 с пультом индикации и управления (универсальный дисплей)
- Модель Modbus-RTU (MD):
 с модулем индикации и управления (универсальный дисплей),
 реле / вводы через Modbus RTU

Измеряемые величины

• Давление (уровень заправки)

Подключение к процессу

• 6х4 мм штуцер для шланга

Питающее напряжение

• U = 18-30 В пост. тока

Гидростатический датчик уровня HFB C4 / R / MD

Подключение кабелей

- Внешний диаметр кабеля: 5-11 мм
- Номинальное поперечное сечение питающего кабеля: 0,25 мм²
- Номинальное поперечное сечение релейных выводов: 0,5 мм²
- Номинальное поперечное сечение переключающих вводов: 0,25 мм²
- Номинальное поперечное сечение Modbus: 0,35 мм²

Материалы, контактирующие со средой

- Шланг: см. принадлежности
- Вес шланга: PVDF

Материалы, не контактирующие со средой

- Сенсорный датчик: AL₂O₃ 96 %
- Корпус датчика: РЕ
- Уплотнение датчика: FPM
- Соединительный кабель датчик / дисплей: TPE-V, устойчивый к УФ
- Корпус: PP-GF
- Крышка корпуса: PP-GF / РА прозрачная
- Уплотнение крышки: NBR
- Крепежные элементы корпуса: РЕ

Bec

Основной вес:: 0,8 кгДополнительный вес: 1,2 кг

Класс защиты

• IP 67

Реакция на выходе

- Power up: < 120 сек
- Реакция на скачок (10-90 %): < 300 мсек
- Время суммирования: о-60 сек, регулируется

Данные датчика (давление)

- Диапазон измерений: 0-0,5 бар
- Точность при 0-85 °C: ±0,2 % (после основной корректировки, от макс. значения)
- Разрешающая способность: 0,1 мбар

Условия окружающей среды

- Температура окружающей среды: -15-70 °C
- Давление окружающей среды, атмосферное: 0,8-1,1 бар
- Относительная влажность воздуха: 20-85 %

Температура рабочего процесса

• В зависимости от используемого материала шланга

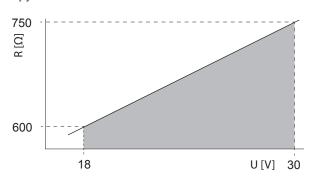
Давление рабочего процесса

• атмосферное: 0,8-1,1 бар

Монтажное положение

• Любое

Принадлежности

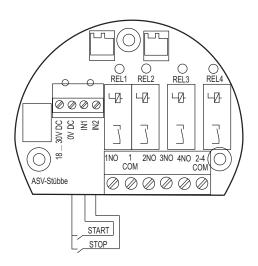

- Шланг РТFE 6х4 мм
- Шланг PE Natur 6х4 мм
- Вес шланга HFB
- Уплотнительная втулка для емкости 2"
- Пульт управления с индикацией (универсальный дисплей)
- Дополнительный вес

Пульт управления с индикацией (универсальный дисплей)

- Используется со всеми приборами КИПа на платформе универсального дисплея (РТМ, НЕТ или UFM).
- Корпус: ABS
- Крышка: ПА, прозрачный
- Индикация: освещенный жк-дисплей
- Управление: 4 функциональные клавиши
- Передняя пленка: полиэстер
- Функция регистратора данных с компостером
- Возможно обновление фирменного программного обеспечения
- Настройки параметров можно сохранять и передавать на другие датчики.
- Функция сохранения на карте microSD
- Батарея: СR1220, 3 В
- После выполненной настройки дисплей можно снять с корпуса датчика.
- Необходим для настройки релейной и Modbus модели!

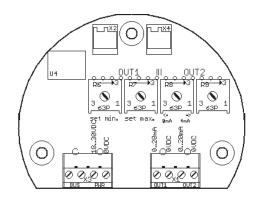
Нагрузка

Nº	Название
R	Макс. сопротивление нагрузки
U	Питающее напряжение


Stübbe

HFB Flex

Nº	Название
1	Крышка корпуса
2	Соединительный корпус
3	Корпус датчика с компрессором
4	Монтажная скоба
5	Кабель датчика
6	Монтажная скоба
7	6х4 мм штуцер для шланга
8	Воздушный фильтр


Схема подключения релейной модели

Клемма	Подключение
18–30 В пост. тока	Питающее напряжение (18–30 В пост. тока)
о В пост. тока	Питающее напряжение (–)
1NO	Реле 1 замыкающий контакт
1COM	Реле 1 СОМ
2NO	Реле 2 замыкающий контакт
3NO	Реле 3 замыкающий контакт
4NO	Реле 4 замыкающий контакт
2-4 COM	Реле 2-4 COM

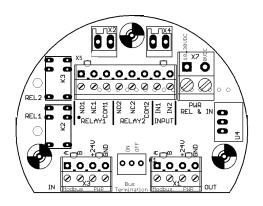


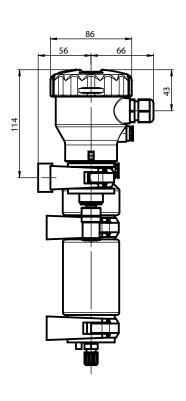
Схема подключения 4-х проводной модели

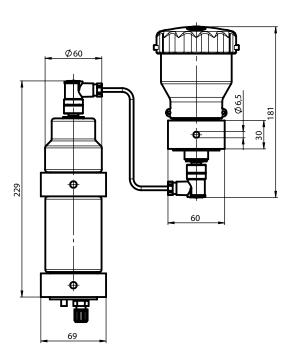
Клемма	Подключение			
Штекер Х3				
PWR: 18–30 В пост. тока	Питающее напряжение (18–30 В пост. тока)			
PWR: о В пост. тока	Питающее напряжение (–)			
Штекер Х1				
OUT1: 0-20 В пост. тока	о/4–20 мА давление			
OUT1: о В пост. тока	Давление материала			

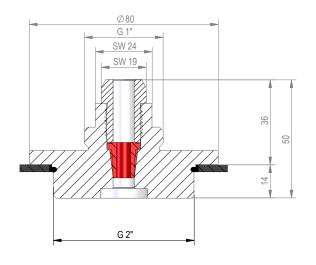
Схема подключения модели Modbus RTU

Клемма	Подключение			
Штекер X2 / X4				
Штекерное соединение	Универсальный дисплей			
Штекер Х5				
NO1	Реле 1 замыкающий контакт			
NC1	Реле 1 размыкающий контакт			
COM1	Реле 1 СОМ			
NO2	Реле 2 замыкающий контакт			
NC2	Реле 2 размыкающий контакт			
COM ₂	Реле 2 СОМ			
Штекер Х7				
PWR: 18–30 В пост. тока	Питающее напряжение от внешнего источника (вводы / реле)			
PWR: о В пост. тока	Масса внешняя			
Штекер X3 / X1				
A	RS485 A			
В	RS485 B			
PWR: +24 B	Рабочее напряжение для датчика			
PWR: GND	Рабочее напряжение для датчика (масса)			

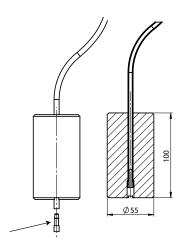
Разводка контактов 5-х полюсного штекера







HFB Flex



Уплотнительная втулка для емкости

Дополнительный вес

Монтаж дополнительного груза:

- 1) Шланг провести через отверстие в дополнительном грузе.
- 2) Ниппель вставить в шланг.
- 3) Шланг потянуть назад.